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Abstract 
The accurate prediction of disease risk using genetic data remains one of the 
key challenges in human genetics research. Regression and whole-genome 
based methods that model the phenotype of interest as a linear function of a 
set of genetic variants have shown much promise, but generally their predictive 
power remains limited. One of the frequent criticisms of these methods is that 
they do not account for higher order interaction effects or more generally that 
they assume a restrictive genetic architecture when constructing the predictive 
model.


 
Artificial neural networks (ANNs) have experienced a resurgence in interest due 
to the success of deep learning in image and speech processing. These 
machines do not enforce a rigid relationship between the predictors and the 
target and can be thought of as general function approximations. Motivated by 
this feature and the general success of ANNs, recent work has suggested that 
ANNs might have an advantage over traditional methods of phenotype 
prediction and promising results have been demonstrated for genome-enabled 
trait prediction in cattle. However, there has been little recent work in 
developing and applying neural network-based approaches to the problem of 
predicting phenotypes and disease risk in human populations.


 
The development of deep learning based methods for human phenotype 
prediction has a number of challenges. First, deep learning methods require a 
large amount of training data. Second, there is not a standard methodology for 
applying deep learning techniques to prediction tasks or more practically there 
is not a well-defined network structure given the input data. Finally, large multi-
layered networks can be computationally cumbersome to train and it can be 
difficult to control for overfitting.


 
In this project, we investigate these challenges and assess the ability of deep 
learning and ANN based methods to predict phenotypes with genetics by 
utilizing the large-scale 23andMe database of more than one million customers, 
80 percent of whom consent to participate research. We compare the 
performance of standard methods like linear, logistic and ordinal regression with 
whole-genome-based and ANN-based predictive methods and evaluate 
performance across a spectrum of morphological and disease-related traits. In 
addition, we compare performance across different network architectures. Our 
results suggest a potential for applying deep learning methods to improve 
disease risk prediction. 


Artificial Neural Network Structure

Pipeline Overview 
• We chose 1 disease phenotype, Type 2 Diabetes (T2D), and 8 non-

disease appearance related traits for testing.

• Each data set was divided into 3/5 for training, 1/5 for validation and 1/5 

for final testing.

• GWAS was run in the training set and we selected all SNPs with a p-

value <= 1e-4.

• We sampled 100 hyperparameter settings, where the hyperparameters 

are learning rate, number of hidden nodes, momentum and l1 and l2 
penalty. We did not employ drop out.


• A separate single layer neural net was fit for each hyperparameter 
setting. Training was done over 500 iterations. We selected the best 
setting and trained this model for an additional 1000 iterations. (Note: in 
some cases we continued for 5000 iterations)


• Age and sex were used as predictors in each model

• The final model is then evaluated in the test set.

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

The value of a hidden node is determined 
by a weighted sum of all nodes in the 
preceding layer.

The final output is a function of all nodes 
from the final hidden layer. For example, 
the final output node is often a logistic 
function.
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Back Propagation: Training the Network

(2) Forward pass: compute outputs from inputs

(4) Backward pass: adjust weights to decrease loss

(1) Initialize 
all weights 
randomly

(3) Calculate the 
gradient of the loss 
function

Repeat 
(2-4)

Training Pipeline

Training Data GWAS

Learning 
Rate

Hidden 
Nodes

l1/l2 Momentum

1E-03 100 1E-05 0.25

1E-04 1000 1E-06 0.50

1E-05 1500 1E-07 0.75

… … … …

Sample 100 Hyperparameter Settings

…

Fit 100 Networks

Final Out of Sample Results

Select Best Network 
and continue training

Phenotype European Cohort Size Logistic AUC Best Neural Net AUC
Sweet vs. Salty 143,600 0.573 (0.007) 0.538 (0.007)

Chin Dimple 77,400 0.682 (.012) 0.564 (0.011)
Attached Earlobes 62,000 0.661 (0.01) 0.622 (0.01)

Freckles 154,700 0.716 (0.007) 0.689 (0.007)
Dimples 73,200 0.597 (0.01) 0.590 (0.008)

Photic Sneeze 123,453 0.649 (0.008) 0.64 (0.007)
New Born Hair 55,798 0.610 (0.01) 0.592 (0.01)
Widows Peak 73,075 0.607 (0.01) 0.595 (0.01)

T2D 322,000 0.776 (0.003) 0.782 (0.003)

Comparison of Logistic Regression and Neural Net

Future Work and Challenges 
Given the current results, we believe that the exploration of more complex neural net structures is necessary. In theory, the 
single layer neural net structure with a logistic output layer should yield results at minimum equivalent to logistic regression. 
We did not observe this for all traits. In addition, we often find that the validation error fails to increase even after a large 
number of iterations, indicating that the network is failing to overfit to the training data, which could be due to limited 
complexity of the data or the network. 

Methods

Results

Potential for Neural Nets in Phenotype Prediction
Complex Interactions and Non-Linearity 

Handles complex gene-gene or gene-
environment interactions as well as highly non-
linear relationships between input and output

Universal Function Approximator 

A multi-layered neural net can learn a 
diverse set of functions without explicit 
structure

Table 1: Comparison of Logistic Regression AUC with the best Neural Net AUC. 
We computed AUC for each binary trait in the final test set using a logistic regression classifier as well as the best neural net 
classifier chosen by validation AUC. The neural net classifiers either fell short or had similar performance to the logistic. This 
may indicate that the relationships between the input and output is not very complex or that the single layer neural net we 
employed is not able to learn this complexity. The best performing models had 0 drop out and high momentum (0.75-0.99).
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23andMe Data 
Research participants were drawn from the customer base of 23andMe, Inc., a personal genetics company. Customers 
were genotyped on a custom Illumina HumanOmniExpress+ genotyping chip. Participants provided informed consent and 
answered research questions online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 
Independent Review Services (E&I Review).
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Figure 1: Concordance between risk for T2D as predicted by logistic regression and the best 
neural net model. 
Although both approaches result in nearly the same AUC, there is a substantial difference between the ranking of individuals 
with respect to their risk score in the top 5% and beyond.
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