Genome-wide association analysis of diverse immune-related phenotypes highlights complex overlapping pathways of immune response

Joyce Y. Tung, Nicholas Eriksson, Amy K. Kiefer, David A. Hinds

23andMe, Inc., Mountain View, CA

Introduction

The immune system's defense of the body against assault requires a complex and highly interconnected interplay of cell-mediated and humoral immunities including a multitude of cell types, antigen processing and presentation systems, cytokines, and inflammatory factors. As a result, teasing out which components underlie each individual's susceptibility to immunological conditions is a daunting task. Genome-wide analyses studying these conditions can shed light on which pathways play the biggest roles for different types of conditions. Here we compare the top associations for a diverse set of inflammatory phenotypes including poison cak contact dermatilis, mosquito bite itchiness, and tonsillectomy (as a proxy for chronic tonsillitis) with each other, uncovering substantial differences and a few similarities in immune functions involved.

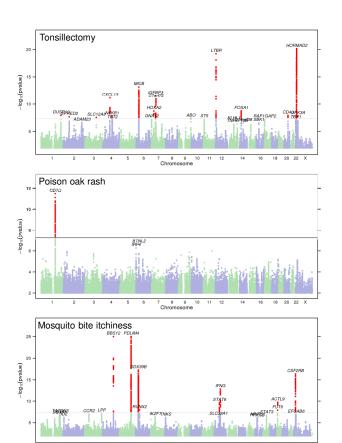
Table 1. Sex and age distribution of cohorts

Phenotype	Levels	Male	Female	0-30 years	30-45 years	45-60 years	60+ years
Tonsillectomy	Case	19862	19149	2388	5997	11375	19251
	Control	44383	34842	16046	28830	19723	14626
Poison Oak Rash	None	11108	11971	4553	7763	5864	4899
	Mild	9424	6308	2464	4391	4208	4669
	Severe	4622	5247	834	2291	3291	3453
Mosquito Bite Itchiness	Very itchy	2455	6836	1396	2954	2600	2341
	Itchy	12653	12705	4715	8267	6383	5993
	Mildly itchy	14364	7378	3114	6307	5900	6421
	Not itchy	1570	788	362	694	677	625

Results

Table 2. Top associations from GWAS on poison oak rash, mosquito bite itchiness, and tonsillectomy.

Band	SNP	P-value	Effect size	95% CI	Proposed Gene	Function				
POISON OAK										
1q23.1	rs59038586	3.3e-12	0.056	[0.040,0.071]	CD1A, CD1C, CD1B	Antigen presentation				
MOSQUITO BITE ITCHINESS										
4q27	rs309407	2.0e-33	0.057	[0.047,0.066]	IL2, IL21	Interleukin signaling				
5q31.1	rs17516457	9.3e-26	-0.049	[-0.059,-0.040]	IRF1	Interferon signaling				
6p21.33	rs3093977	5.6e-18	0.054	[0.042,0.067]	HLA-B, HLA-C	Antigen presentation				
22q12.3	rs5756391	4.2e-17	-0.039	[-0.048,-0.030]	CSF2RB	Interleukin signaling				
12q15	rs4141135	1.7e-13	-0.034	[-0.043,-0.025]	IFNG	Interferon signaling				
19p13.2	rs2967677	2.0e-10	0.049	[0.034,0.064]	HNRNPM	Interleukin signaling				
12q13.3	rs3024971	2.5e-10	-0.046	[-0.061,-0.032]	STAT6	Interleukin signaling				
6p21.1	rs11751172	1.2e-08	0.030	[0.020,0.041]	RUNX2	Osteoblast differentiation				
19p13.3	rs778798	1.2e-08	-0.029	[-0.039,-0.019]	FUT6	Bacterial infection defense				
TONSILLECTOMY										
22q12.2	rs9620943	7.40E-21	0.898	[0.877,0.918]	LIF	Interleukin signaling				
12p13.31	rs10849448	6.10E-20	0.895	[0.874,0.917]	TNFRSF1A	Lymphoid development				
6p21.33	rs115846244	6.70E-14	1.208	[1.150,1.269]	HLA-B, HLA-C	Antigen presentation				
7p12.3	rs80077929	2.90E-12	1.133	[1.094,1.173]	IGFBP3	IGF signaling				
4q21.1	rs4859854	6.90E-12	0.923	[0.902,0.944]	CXCL13	Lymphoid development				
7p12.2	rs11773763	1.10E-11	0.927	[0.906,0.947]	IKZF1	Lymphoid development				
14q21.1	rs762083	1.80E-09	1.064	[1.043,1.086]	FOXA1	Liver development				
7p15.2	rs6668	1.90E-09	1.067	[1.044,1.089]	HOXA2	Facial development				
1q41	rs55728445	1.20E-08	1.105	[1.068,1.144]	DUSP10	Stress signaling				
20q13.12	rs1883832	1.20E-08	1.067	[1.044,1.091]	CD40	TNF signaling				
22q13.31	rs55651132	1.50E-08	1.079	[1.051,1.108]	UPK3A	Bacterial infection defense				
4q24	rs72696109	1.70E-08	1.063	[1.041,1.086]	NFKB1	NFKB1 signaling				
3q21.2	rs1980080	2.90E-08	0.943	[0.923,0.962]	SLC12A8	?				
9q34.2	rs532436	4.50E-08	0.934	[0.911,0.957]	ABO	Blood group				


Band = chromosomal band; SNP = SNP identifier; P-value = p-value of association; Effect size = odds ratio (for tonsillectomy) or beta (for poisor oak or mosquito bite tichiness); 95% CI = 95% confidence interval; proposed gene = gene most likely to be involved; pathway = functional pathway most likely to be involved

Discussion

Mosquito bite itchiness, poison oak rash, and infection of the tonsils (using tonsillectomy as a proxy for tonsillitis) represent a set of diverse phenotypes rarely studied together, but related as they represent reactions of the immune system to different foreign substances (mosquito saliva proteins, runsibil), and bacteria or viruses, respectively). Determining which parts of the immune system are key to each reaction can help us identify which pathways are common to many reactions and which are specific to creatian reactions and therefore might be more specific targets for intervention. See Figure 1. Hits near genes that are important for antigen presentation were found in all three phenotypes, while genes involved in defense against bacterial infection and interleukin signaling were found for both tonsillectomy and mosquito bite rash. The differences between phenotypes were also interesting. The development of lymphoid tissue (of which tonsils are one example), facial morphology, TNF a signaling, NFK 1 signaling, and blood group were all implicated in the tonsillectomy GMSs. By contrast, genes related to interferon signaling, which might be more related to the inflammation reaction to a mosquito bite, were seen in the mosquito bite thchiness GWAS. This analysis demonstrates that analyzing a diverse set of phenotypes united by a set of pathways can provide insight into how different parts of a system are utilized for specific biological processes.

Acknowledgments

We would like to thank 23andMe's customers who consented to participate in research for enabling this study. We also thank the employees of 23andMe who made this research possible.

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 X Y Figure 1. Manhattan plots of association test statistics for tonsillectomy, poison oak rash, and mosquito bite itchiness.

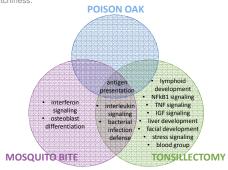


Figure 2. Overlapping immune-response functions amongst tonsillectomy, mosquito bite itchiness, and poison oak rash.

Methods

To identify variants associated with tonsillectomy, poison oak, and mosquito bite reaction, we conducted a genome-wide association analysis (GWAS) on a cohort of unrelated 23andMe customers (Table 1) genotyped on custom Illumina arrays. We restricted participants to a set of individuals who have 39%. European anosetry, as determined through an analysis of local anosetry ka comparison to the three HapMap 2 populations. A maximal set of unrelated individuals was chosen for the analysis using a segmental identity-ty-descent (IBD) estimation algorithm, individuals were defined as related if they shared more than 700 cMIBs). Including regions where the two individuals share derive nor both genomic segments identical-by-descent. Samples were genotyped on at least one of three genotyping platforms based on either the Illumina Human/Hap505- BeaChip, the Haudy-Weinberg equilibrium P-10⁻²⁰, call rate > 95%, and without large allele frequency discrepancies compared to the 1000 Genomes reference data. SNPs met our quality control criteria of avg.rsq-0.5 and min.rsq-0.3 in any imputation batch, no strong evidence of an imputation baber for externed laguity control criteria of avg.rsq-0.5 and min.rsq-0.3 in any imputation batch, no strong evidence of an imputation baber for externed laguistic regression results that did not comverge due to complete separation, identified by abs(effect)=10 or stderrs-10 on the log odds scale.

For tonsiliectomy, we computed association test results by logistic regression assuming additive allelic effects, including covariates for age, gender, and the top five principal components. For tests using imputed data, we use the imputed dosages rather than best-guess genotypes. Cases were defined as those who answered yes to "Have you ever had any of the following surgeries" (Tonsilisticomy) or "Have you had your tonsilis removed?" Controls answered no. For poison cak and mosquito bite reaction, association tests were performed by linear regression. Poison cak rash was assessed by "Have you ever had any ack, poison you for sole most of the sole work association cak rash was assessed to be the action, association tests were performed by linear tegression. Poison, and were associated to be the sole of the sole